This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Macromolecular Science, Part A
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title content=t713597274

Solubility Parameter of Acrylamide Series Polymers through Its Components and Group Contribution Technique
 Husain Ahmad ${ }^{\text {a }}$

${ }^{\text {a }}$ Center for Materials Science and Technology Indian Institute of Technology, Delhi New, Delhi, India

To cite this Article Ahmad, Husain(1982) 'Solubility Parameter of Acrylamide Series Polymers through Its Components and Group Contribution Technique', Journal of Macromolecular Science, Part A, 17: 4, 585-600
To link to this Article: DOI: 10.1080/00222338208062410
URL: http://dx.doi.org/10.1080/00222338208062410

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Solubility Parameter of Acrylamide Series Polymers through Its Components and Group Contribution Technique

HUSAIN AHMAD
Center for Materials Science and Technology Indian Institute of Technology, Delhi
New Delhi 110016, India

ABSTRACT

The chemical group contribution technique, based on the principle of additivity of molar refraction and polarization constants for groups in a molecule, has been used for determining the solubility parameters of acrylamide series polymers. The solubility parameter for a polymer is calculated through its components by using the contributions of chemical groups reported in the literature with the resultant values found to compare favorably. It is also noticed that the δ-values decrease with an increase in molar volume.

INTRODUCTION

Solubility parameter is one of the fundamental properties of a substance, is based on the theory of regular solution, and is being used quite extensively for finding out the miscibility of polymeric materials in individual solvents and their blends. Knowledge about solubility parameters [1-3] and other physical characteristics such as hydrogen bonding, polarity, molar volume, and wettability of different types of materials saves time and effort in finding their miscibility.

Scientists working in the field of solubility parameter have derived a number of mathematical expressions for the determination of the solubility parameter of low molecular weight substances $[1,2,4]$. But these expressions are not applicable in the case of polymers because the data on the physical constants, i.e., boiling point, molar volume, heat of vaporization, van der Waals and critical constants, compressibility factor, and surface tension, required for the calculation solubility parameter are not available.

The process of dissolution of the polymer in a solvent depends mainly on the heat of mixing which is negligible when the cohesive energy densities of the polymer and solvent are almost equal. The free energy of mixing $\Delta \mathrm{F}_{\mathrm{m}}$ of the polymer-solvent system can be expressed as

$$
\begin{equation*}
\Delta \mathrm{F}_{\mathrm{m}}=\Delta \mathrm{H}_{\mathrm{m}}-\mathrm{T} \Delta \mathrm{~S}_{\mathrm{m}} \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\Delta H_{m} & =V_{m}\left\{\left(\mathrm{E}_{1} / \mathrm{V}_{1}\right)^{1 / 2}-\left(\mathrm{E}_{2} / \mathrm{V}_{2}\right)^{1 / 2}\right\} \phi_{1} \phi_{2} \tag{2}\\
& =\mathrm{V}_{\mathrm{m}}\left\{\delta_{1}-\delta_{2}\right\} \phi_{1} \phi_{2} \tag{3}\\
\text { where } \Delta \mathrm{H}_{\mathrm{m}} & =\text { the heat of mixing } \\
\Delta \mathrm{S}_{\mathrm{m}} & =\text { the entropy of mixing } \\
\mathrm{V}_{\mathrm{m}} & =\text { total volume of the two components } \\
\mathrm{V}_{\mathrm{S}} & =\text { their molar volumes } \\
\mathrm{E}_{\mathrm{S}} & =\text { their cohesive energies } \\
\phi_{\mathrm{S}} & =\text { their volume fractions } \\
\delta_{\mathrm{S}} & =\text { their solubility parameters }
\end{align*}
$$

In systems where the long chains of the polymer uncoil in the course of dissolution, there is a high ΔS_{m} value, which in turn favors a negative $\Delta \mathrm{F}_{\mathrm{m}}$. If the heat of mixing $\Delta \mathrm{H}_{\mathrm{m}}$ is not greater than $\mathrm{T} \Delta \mathrm{S}_{\mathrm{m}}$, dissolution of the polymer in the solvent is possible. In the other case where the heat of mixing is very low ($\delta_{1} \approx \delta_{2}$), the miscibility of the two components is assured but the extent of dissolution is governed by the entropy factor ΔS_{m}.

This theory has been developed for mixing of nonpolar substances. However, many of the solvents and polymers in common use are polar, i.e., have dipole moments and/or capabilities for hydrogen bonding. Hence these factors must be included in the theory.

It was Prausnitz et al. $[5,6]$ who divided the energy of vaporization into a nonpolar or dispersion part and polar part. Hansen [7] divided the polar part into a dipole-dipole contribution and hydrogen bonding contribution, both of which could be determined through solubility experiments. According to Hansen [7],

$$
\begin{equation*}
\delta^{2}=\delta_{\mathrm{d}}^{2}+\delta_{\mathrm{p}}^{2}+\delta_{\mathrm{h}}^{2} \tag{4}
\end{equation*}
$$

where $\delta_{d}=$ solubility parameter due to dispersion forces
$\delta_{p}=$ solubility parameter due to polar forces
$\delta_{h}=$ solubility parameters due to hydrogen bonding forces
These three components of solubility parameters are separately related to the refractive index, the dipole moment, and the energy of hydrogen bonding, respectively.

Relation between Refractive Index n and δ

It was Sewell [8] who showed that the interaction energy between nonpolar molecules is dependent on the polarizability (London dispersion forces). The polarization, on the other hand, can be described by the Lorentz-Lorenz equation:

$$
\frac{4}{3} \pi N / V \alpha=\left(n^{2}-1\right) /\left(n^{2}+2\right)
$$

where $\mathrm{N}=$ number of molecules in 1 mol

$$
\alpha=\text { polarizability }
$$

Using the concept of separation of cohesive energy density (C.E.D.) into three components, we expect a relationship between δ_{d} and n even for polar substances in which the interference of polar hydrogen bonding forces has vanished. Koenhem and Smolders [9] gave a relationship between δ_{d} and n applicable for polar substances:

$$
\begin{equation*}
\delta_{d}=9.55 n-5.55 \tag{6}
\end{equation*}
$$

The additive property correlating optical refraction with chemical structure is called molar refraction. According to Lorentz and Lorenz, the molar refraction $R_{L L}$ is given by

$$
\begin{equation*}
R_{L L}=\frac{n^{2}-1}{n^{2}+2} \frac{M}{d}=\frac{n^{2}-1}{n^{2}+2} V_{m} \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{n}=\left[\frac{1+2 \mathrm{R}_{\mathrm{LL}} / \mathrm{V}_{\mathrm{m}}}{1-\mathrm{R}_{\mathrm{LL}} / V_{\mathrm{m}}}\right]^{1 / 2} \tag{8}
\end{equation*}
$$

Relationship between Dipole Moment μ and δ

Beerbower [10] proposed a very simple and empirical relationship for the determination of δ_{p} :

$$
\begin{equation*}
\delta_{\mathrm{p}}=\mathrm{A} \frac{\mu}{\mathrm{~V}^{1 / 2}} \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{\mathrm{p}}=9.5 \frac{\mu}{\mathrm{~V}^{1 / 2}} \tag{10}
\end{equation*}
$$

where A is a constant [9] equal to 9.5 .
It is possible to evaluate the dipole moment with the help of Debye's equation [11, 12]:

$$
\begin{equation*}
P_{L L}-R_{L L}=\left[\frac{\epsilon-1}{\epsilon+2}-\frac{n^{2}+1}{n^{2}+2}\right] V_{m}=\frac{4 \pi}{9} \frac{N \mu^{2}}{K T}=20.6 \mu^{2} \tag{11}
\end{equation*}
$$

or

$$
\begin{equation*}
\mu=\left[\frac{\mathbf{P}_{\mathbf{L L}}-\mathbf{R}_{\mathbf{L L}}}{20.6}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

where $\mathrm{K}=$ Boltzman constant
$T=$ absolute temperature
$\epsilon=$ dielectric constant
$P_{L L}=\frac{\epsilon-1}{\epsilon+2}$ (molar polarizability)

The values of group contributions for $R_{L L}$ and $P_{L L}$ are available in the literature [12].

Relationship between Hydrogen Bonding Energy \mathbf{E}_{h} and δ_{h}

Different hydrogen-bonded compounds have different E_{h} values. The following relationship was used to evaluate the value of δ_{h} :

$$
\delta_{h}=\left(E_{h} / V_{m}\right)^{1 / 2}
$$

The values of E_{h} for different groups are available in the literature [9].

The aim of this paper is to evaluate the δ-values of polyacrylamides through its components and group contribution technique.

Materials. The formulas of monomers, taken from Functional Monomers [13], were rewritten in the form of polymer repeating units of the corresponding polymers for calculating their solubility parameter values.

Procedure. The values of dipole moments μ and refractive index n were calculated with the help of molar polarizability $P_{L L}$ and molar refraction $R_{L L}$ as their values for the individual chemical groups are reported in the literature [12]. Molar volumes [14] of the polymers have been calculated by adding the contributions of atoms and bonds present in a single polymer repeating unit. The following two examples will illustrate the method of calculating V, n, $\mu, \delta_{d}, \delta_{\mathrm{p}}$, and δ_{h}.

Example 1. Poly-N-n-butyl acrylamide

The molar volume of this polymer at $25^{\circ} \mathrm{C}$ is evaluated as shown in Table 1.

The evaluations of $R_{L L}, n, P_{L L}$, and μ are given in Table 2. Using Eqs. (6), (9), and (13), the following values were obtained:

$$
\begin{aligned}
\delta_{d} & =9.55 \mathrm{n}-5.55 \\
& =9.55 \times 1.482-5.55=8.603(\mathrm{cal} / \mathrm{cc})^{1 / 2}
\end{aligned}
$$

TABLE 1. Poly-N-n-butyl Acrylamide

Atoms and bonds	Molar volume
$7(\mathrm{C})$	12.95
$13(\mathrm{H})$	85.67
$1(\mathrm{O})$	7.70
1 N	4.82
$1(=)$	8.94
Polymer repeating unit (PRU)	2.97
	$\mathrm{~V}=\frac{123.05}{}$

TABLE 2.

$$
\begin{aligned}
& \delta_{p}=\frac{9.5 \mu}{V^{1 / 2}}=\frac{9.5 \times 1.051}{11.09}=0.900(\mathrm{cal} / \mathrm{cc})^{1 / 2} \\
& \delta_{h}=\left(\frac{\mathrm{E}_{\mathrm{CONH}}}{\mathrm{~V}}\right)^{1 / 2}=\left(\frac{3900}{123.05}\right)^{1 / 2}=5.630(\mathrm{cal} / \mathrm{cc})^{1 / 2}
\end{aligned}
$$

The total value of δ is

$$
\delta=\left[\delta_{\mathrm{d}}^{2}+\delta_{\mathrm{p}}^{2}+\delta_{\mathrm{h}}^{2}\right]^{1 / 2}=10.320(\mathrm{cal} / \mathrm{cc})^{1 / 2}
$$

TABLE 3. Poly-N-benzyl Acrylamide

Atoms and bonds	Molar volume
$10(\mathrm{C})$	18.50
$11(\mathrm{H})$	72.49
$1(\mathrm{O})$	7.70
$1(\mathrm{~N})$	4.82
$4(=)$	35.76
Six-membered ring	2.35
PRU	2.97
	$\mathrm{~V}=144.59$

TABLE 4.

Groups	R_{LL}	$\mathrm{n}=$	P_{LL}	$\mu=$	$\left.\frac{\mathrm{p}_{\mathrm{LL}}-\mathrm{R}_{\mathrm{LL}}}{20.6}\right]^{1 / 2}$
$1\left(-\mathrm{CH}_{2}\right)$ 2()	25.51 9.15	1.491	25.00 9.30	1.043	
1 (${ }^{\text {CONO}}$ -	7.23		30.00		
	41.89		64.30		

Example 2. Poly-N-benzyl acrylamide

The molar volume of this polymer at $25^{\circ} \mathrm{C}$ is shown in Table 3.
The values of $R_{L L}, n, P_{L L}$, and μ are given in Table 4.
Using Eqs. (6), (9), and (13):

$$
\delta_{d}=8.689
$$

TABLE 5. Solubility Parameter of Alkyl and Aryl Acrylamide Series Polymers

Name of polymer	Molar volume (V)	Solubility parameter (cal/cc) ${ }^{1 / 2}$			
		${ }^{\delta}{ }_{d}$	${ }^{\delta} \mathrm{p}$	${ }^{\delta}{ }_{h}$	δ
1 Poly-N-methyl acrylamide	77.96	8.35	1.13	7.07	11.00
2 Poly-N-ethyl ac rylamide	92.99	8.46	1.04	6.48	10.71
3 Poly-N-isopropyl acrylamide	108.02	9.38	0.96	6.01	11.18
4 Poly-N-n-butyl acrylamide	123.05	8.60	0.90	5.63	10.32
5 Poly-N-iso-butyl acrylamide	123.05	8.60	0.90	5.63	10.32
$6 \text { Poly-N-t-butyl acryl- }$ amide	123.05	8.60	0.90	5.63	10.32
7 Poly-N,N-diethyl acrylamide	123.05	8.77	0.87	5.63	10.46
8 Poly-N-phenyl acrylamide	129.56	9.41	0.85	5.49	10.92
9 Poly-N-(1-methyl-1propyl butyl)acrylamide	131.49	8.78	0.87	5.45	10.37
10 Poly-N-S-amyl acrylamide	138.08	8.63	0.85	5.31	10.17
11 Poly-N-S-isoamyl acrylamide	138.08	8.63	0.85	5.31	10.17
12 Poly-N-t-amyl acrylamide	138.08	8.63	0.85	5.31	10.17
13 Poly-N-cyclohexyl acrylamide	142.28	8.83	-	5.24	10.27
14 Poly-N-p-tolyl acrylamide	144.59	9.42	0.81	5.26	10.82
15 Poly-N-benzyl acrylamide	144.59	8.69	0.82	5.19	10.16
16 Poly-N-methyl-Nphenyl acrylamide	144.59	9.27	0.82	5.19	10.66
17 Poly-N-1,1-dimethyl butyl acrylamide	153.11	8.68	0.81	5.05	10.07

TABLE 5 (continued)

Name of polymer	Molar volume (V)	Solubility parameter (cal/cc) ${ }^{1 / 2}$			
		${ }^{6} \mathrm{~d}$	${ }^{\delta}{ }_{\mathrm{p}}$	${ }^{\delta} \mathrm{h}$	δ
18 Poly-N-1-methyl-1ethyl propyl acrylamide	153.11	8.68	0.81	5.05	10.07
19 Poly-N-(1, 1,2-trimethyl propyl)acrylamide	153.11	8.68	0.81	5.05	10.07
20 Poly-N-p-methyl benzyl acrylamide	159.62	9.27	0.79	5.01	10.57
21 Poly N-n-heptyl acrylamide	168.14	8.72	0.77	4.82	9.99
22 Poly-N-(1,1-dimethylamyl) acrylamide	168.14	8.72	0.77	4.82	9.99
23 Poly-N-(1-methyl-1ethyl butyl) acrylamide	168.14	8.72	0.77	4.82	9.99
24 Poly-N-1(1,1-diethyl propyl) acrylamide	168.14	8.72	0.77	4.82	9.99
25 Poly-N-(1-methyl-1-ethyl-2-methyl propyl) acrylamide	168.14	8.72	0.77	4.82	9.99
26 Poly-N-(1,1,2-trimethyl butyl) acrylamide	168.14	8.72	0.77	4.82	9.99
27 Poly-N-(1,1,3-trimethyl butyl) ac rylamide	168.14	8.72	0.77	4.82	9.99
28 Poly-N-n-octyl acrylamide	183.17	8.76	0.74	4.61	9.93
29 Poly-N-(1,1-dimethyl hexyl) acrylamide	183.17	8.76	0.74	4.61	9.93
30 Poly-N-(1-methyl-1ethyl amyl) acrylamide	183.17	8.76	0.74	4.61	9.93
31 Poly-N-(1,1-4-trimethyl amyl) acrylamide	183.17	8.75	0.74	4.61	9.92

TABLE 5 (continued)

Name of polymer	Molar volume (V)	Solubility parameter (cal/cc) ${ }^{1 / 2}$			
		${ }^{\delta}{ }_{d}$	${ }^{\delta}{ }_{\mathrm{p}}$	${ }^{6} \mathrm{~h}$	δ
32 Poly-N-(1,4-dimethyl-1-ethyl amyl) acrylamide	183.17	8.72	0.74	4.61	9.89
33 Poly-N-(1, 1,3,3-tetramethyl butyl)acrylamide	183.17	8.74	0.74	4.61	9.91
34 Poly-N-(1,3-dimethyl 1-ethyl butyl) acrylamide	183.17	8.75	0.74	4.61	9.92
35 Poly-N,N-di-n-butyl acrylamide	183.17	10.44	0.69	4.61	11.43
36 Poly-N-(1,1-dibutyl amyl) acrylamide	191.61	11.02	0.72	4.51	11.93
37 Poly-N,N-diphenyl acrylamide	196.19	9.68	0.66	4.49	10.69
38 Poly-N-(1,1-dimethylheptyl) acrylamide	198.20	8.77	0.71	4.44	9.86
39 Poly-N-(1-methyl-1propyl amyl) acrylamide	198.20	8.77	0.71	4.44	9.86
40 Poly-N-(1-1-diethyl amyl) acrylamide	198.20	8.77	0.71	4.44	9.86
41 Poly-N-[1-(2-methyl-propyl-1-(3-methyl butyl)] acrylamide	213.23	8.79	0.68	4.28	9.80
42 Poly-N-(1-methyl-1-butyl-3-methyl butyl) acrylamide	213.23	8.77	0.68	4.28	9.79
43 Poly-N,N-dibenzyl acrylamide	226.21	9.33	0.66	4.15	10.23
44 Poly-N-(1-ethyl-1butyl amyl) acrylamide	228.26	8.81	0.66	4.13	9.75
45 Poly-N,N-dicyclohexyl acrylamide	234.81	9.13	0.56	4.08	10.02

TABLE 5 (continued)

Name of polymer	Molar volume (V)	Solubility parameter (cal/cc) ${ }^{1 / 2}$			
		$\delta_{\text {d }}$	δ_{p}	δ_{h}	δ
46 Poly-N-n-dodecyl acrylamide	243.29	8.83	0.64	4.00	9.72
47 Poly-N-(1-propyl-1butyl amyl) acrylamide	243.29	8.82	0.64	4.00	9.72
48 Poly-N,N-di-(2-ethyl hexyl) acrylamide	303.41	8.31	0.57	3.59	9.07
49 Poly-N-n-octadecyl acrylamide	335.72	8.86	0.55	3.41	9.51

TABLE 6. Solubility Parameters of Functional Group Substituted Acrylamide Series Polymers

Name of polymer	V	$\delta_{\text {d }}$	δ_{p}	${ }^{\delta} \mathrm{h}$	δ
1 Poly-N-(2,2,2-trifluoroethyl) acrylamide	83.12	9.00	1.17	6.85	11.37
2 Poly-N-hydroxymethyl acrylamide	85.66	9.10	1.16	6.75	11.39
3 Poly-N-acetyl acrylamide	87.61	8.81	1.18	6.66	11.11
4 Poly-N-(2-hydroxyethyl) acrylamide	102.69	8.25	1.06	6.16	10.35
5 Poly-N-methoxy methyl acrylamide	102.69	8.27	1.06	6.16	10.37
6 Poly-N-(2-cyanoethyl) acrylamide	111.02	8.38	1.05	6.30	10.54
7 Poly-N-(2-oxopropyl) acrylamide	111.28	8.36	1.05	5.92	10.30
8 Poly-N-(ethoxy methyl) acrylamide	115.72	7.89	1.00	5.81	9.85
9 Poly-N-hydroxymethylN -methyl acrylamide	115.72	8.62	0.93	8.76	12.33
10 Poly-N-(N', N^{\top}-dimethylaminomethyl) acrylamide	119.43	8.58	-	5.71	-

TABLE 6 (continued)

Name of polymer	V	${ }^{\delta}{ }_{d}$	${ }^{\delta} \mathrm{p}$	δ_{h}	δ
11 Poly-N-(1-methyl-2oxopropyl) acrylamide	126.51	8.43	0.99	5.55	10.16
12 Poly-N-(n-propoxy methyl) acrylamide	130.75	8.53	1.02	5.46	10.18
13 Poly-N-(isopropoxymethyl) acrylamide	130.75	8.52	1.02	5.46	10.18
14 Poly-N-(1-ethyl-2hydroxyethyl) acrylamide	130.75	8.51	0.94	5.46	10.15
15 Poly-N-[1-(1-methyl-1-hydroxymethyl)] acrylamide	130.75	8.50	0.94	5.46	10.15
16 Poly-N-(n-butoxymethyl) acrylamide	145.78	8.66	0.91	5.17	10.13
17 Poly-N-(isobutoxymethyl) acrylamide	145.78	8.58	0.89	5.17	10.06
18 Poly-N-(3-dimethyl amino propyl) acrylamide	149.49	8.72	-	5.11	-
$\begin{aligned} & 19 \text { Poly-N-[1, 1,1-tris- } \\ & \text { (hydroxymethyl) } \\ & \text { methyl] acrylamide } \end{aligned}$	152.74	8.26	0.90	5.05	9.72
20 Poly-N,N-bis(2-cyanoethyl) acrylamide	159.11	7.95	0.83	5.55	9.73
21 Poly-N-[2-(2-methyl-4-hydroxy pentyl)] acryl acrylamide	160.81	8.59	0.85	4.92	9.94
22 Poly-N-[2-(2-methyl-4-oxopentyl)] acrylamide	163.16	6.98	1.01	4.89	8.58
23 Poly-N-(2-dimethylaminoethyl) ac rylamide	164.52	8.76	-	4.78	-
24 Poly-N-benxyl oxomethyl acrylamide	167.32	9.07	0.77	5.21	10.50

TABLE 6 (continued)

Name of polymer	V	$\delta_{\text {d }}$	${ }^{\circ} \mathrm{p}$	δ_{h}	δ
$\begin{aligned} & 25 \text { Poly-N-[} 3-(1,5-\mathrm{di}- \\ & \text { methyl-2-oxohexyl)] } \\ & \text { acrylamide } \end{aligned}$	171.60	8.59	0.85	4.77	9.86
26 Poly-N-(1-benzyl-2oxopropyl acrylamide	193.14	9.02	0.80	4.55	10.13
2-or 3-Amino and 2- or 3-Alkoxy Acrylamide					
27 Poly-N-methyl-3ethoxy acrylamide	115.72	8.46	1.00	6.20	10.54
28 Poly-N-ethyl-2-ethoxy acrylamide	130.75	8.52	0.94	5.83	10.37
29 Poly-N-ethyl-3-ethoxy acrylamide	130.75	8.52	0.94	5.83	10.37
30 Poly-N,N-dimethyl-3ethoxy acrylamide	130.75	8.15	0.80	5.83	10.05
31 Poly-N-(n-propyl)-2ethoxy acrylamide	145.78	8.58	0.89	5.52	10.24
32 Poly-N-(n-butyl-2ethoxy acrylamide	160.81	8.62	0.85	5.26	10.13
33 Poly N,N-diethyl-3ethoxy acrylamide	160.81	7.18	0.73	5.26	8.93
2- or 3-Halo Acrylamide					
34 Poly-N,N-diethyl-2,3-dichloroacrylamide	151.71	8.96	0.89	5.20	10.40
35 Poly-N,N-diethyl-2-bromo-3-chloro acrylamide	156.98	8.83	0.78	5.05	10.20
36 Poly-N,N-diethyl-2-chloro-3-bromo acrylamide	156.98	7.94	0.24	5.05	9.41
37 Poly-N,N-diethyl-2,3dibromo acrylamide	162.25	9.30	0.67	4.90	10.53

TABLE 7. Solubility Parameter of Polymers and Their Comparison with Experimental Values Reported in the Literature

Name of polymer	$\delta_{\text {d }}$	${ }^{\delta} \mathrm{p}$	${ }^{\delta} \mathrm{h}$	δ	${ }_{[16,17]^{\mathrm{L}}}$
1 Polyvinyl acetate	8.34	0.72	4.10	9.32	9.40 (C)
2 Polymethyl acrylate	8.34	0.72	4.10	9.32	$\begin{array}{ll} 10.1 & \text { (C) } \\ 10.1 & \text { (V) } \end{array}$
3 Polyethyl acrylate	8.39	0.67	3.74	9.21	$\begin{aligned} & 9.40(\mathrm{C}) \\ & 9.40(\mathrm{~V}) \end{aligned}$
4 Polybutyl acrylate	7.90	0.56	3.24	8.56	$\begin{aligned} & 8.76(\mathrm{C}) \\ & 8.80(\mathrm{~V}) \end{aligned}$
5 Polymethyl methacrylate	8.45	0.66	3.74	9.26	$\begin{aligned} & 9.10(\mathrm{C}) \\ & 9.50(\mathrm{~V}) \\ & 9.10(\mathrm{~V}) \\ & 9.40(\mathrm{~V}) \end{aligned}$
6 Polyethyl methacrylate	8.55	0.61	3.46	9.24	8.95 (C)
7 Polybutyl methacrylate	8.66	0.61	3.05	9.20	8.75 (C)
8 Polyethylene	8.45	-	-	8.45	7.90 (C)
9 Polystyrene	9.66	-	-	9.66	$\begin{aligned} & 8.60(\mathrm{~V}) \\ & 9.10(\mathrm{~V}) \\ & 9.10(\mathrm{C}) \end{aligned}$
10 Poly-N-methyl acrylamide	8.35	1.13	7.07	11.00	11.26 (H)
11 Poly-N-ethyl acrylamide	8.46	1.04	6.48	10.71	9.78 (H)
12 Poly-N-benzyl acrylamide	8.69	0.82	5.19	10.16	10.62 (H)
13 Poly-N-(n-propoxymethyl) acrylamide	8.53	1.02	5.46	10.18	10.25 (H)
14 Poly-N-(n-butoxymethyl) acrylamide	8.66	0.91	5.17	10.13	9.95 (H)

[^0]```
\(\delta_{p}=0.824\)
\(\delta_{h}=5.193\)
\(\delta=10.160(\mathrm{cal} / \mathrm{cc})^{1 / 2}\)
```


## RESULTS

The values of the components of solubility parameter i.e., ${ }^{\delta}{ }_{\mathrm{d}},{ }^{\delta}{ }_{\mathrm{p}}$, $\delta_{h}$, and total value of solubility parameter $\delta$, are listed in Tables 5-7.

## DISC USSION

For the purpose of establishing the applicability of the additivity of group contribution technique, the total value of the solubility parameter was evaluated and compared with the practically determined ones. The results listed in Table 7 (Columns 4 and 5) indicate that the difference between calculated and experimentally determined solubility parameter values for a polymer is fairly small in most cases. However, the $\delta$ values obtained from such calculations depend greatly on the accuracy of the value of the contribution of the individual group, atom, and bond reported in the literature. Not many practical methods are available for the determination of solubility parameter of polymers, and the theoretical methods proposed by Small [15] and others [3, 12, 16] are not applicable to strongly hydrogen-bonded compounds. Hence it was felt worthwhile to evaluate the components of $\delta$ by the group contribution technique.

In Tables 5 and 6 the polymers are listed according to the increasing size of the substituent groups in them, hence they are arranged in the increasing order of their molar volumes. Scrutiny of the data reveals that a decrease of $\delta$ value is observed with an increase in molar volume. As the size of the polymer repeating unit increases, the value of both $V$ and total cohesive energy also increases. But the decrease in $\delta$ value indicates that the increase in V and total cohesive energy is not exactly proportional.

In a particular homologous series, as the molar volume increases, the $\delta_{d}$ value also increases while the $\delta_{\mathrm{p}}$ and $\delta_{\mathrm{h}}$ values dec rease (Table 5). But in the case of functional group substituted polymers (Table 6), a decreasing trend in all the components of the solubility parameter, i.e., $\delta_{d}, \delta_{\mathrm{p}}$, and $\delta_{\mathrm{h}}$, is noticed. This may be because inclusion of a $\mathrm{CH}_{2}$ - group in a particular series (Table 5) contributes much to the dispersion components of energy and less to the molar volume. But in the case of functional group substituted polymers (Table 6), they contribute to the cohesive energy and, being bulkier in weight, they add more to the molar volume. Hence a decreasing trend in all the components of $\delta$ is observed.

## REFERENCES

[1] J. H. Hildebrand and R. L. Scott, The Solubility of Non-electrolytes, Reinhold, New York, 1949.
[2] H. Burrell, Off. Dig., 27, 726 (1955).
3] K. L. Hoy, J. Paint Technol., 42, 76 (1970).
$4]$ H. Ahmad and M. Yaseen, J. Colour Soc., 13, 7 (1974).
5] R. F. Blanks and J. M. Prausnitz, Ind. Eng. Chem., Fundam., 3, 1 (1964).
[6] $\overline{\mathrm{R}}$. F. Weiner and J. M. Prausnitz, Hydrocarbon Process. Pet. Refiner, 44, 237 (1965).
[7] C. M. Hansen and K. Skaorup, J. Paint Technol., 39, 511 (1967).
8] J. H. Sewell, R. A. E. Technical Report No. 66185 , June 1966.
9] D. M. Koenhem and C. A. Smolders, J. Appl. Polym. Sci., 19, 1163 (1975).
[10] A. Beerbower and J. R. Dieky, ASLE Trans., 12, 1 (1969).
$11]$ P. Debye, Phys. Z., 13, 97 (1912).
12] D. W. Van Krevelen and P. J. Hoftyzer, Properties of Polymers, Correlation with Chemical Structure, EISevier, Amsterdam, 1972.
[13] D. C. MacWilliams, Functional Monomers, Their Preparation and Application, Vol. 1 (Yocum and Nyquist, eds.), Dekker, New York, 1973.
[14] J. H. Sewell, J. Appl. Polym. Sci., 17, 1741 (1973).
$15]$ P. A. Small, J. Appl. Chem., 3, 71 (1953).
[16] H. Ahmad and M. Yaseen, J. Oil Colour Chem. Assoc., 60, 99, 488 (1977); J. Coatings Technol., 50, 86 (1978); Polym. Eng. Sci., 19, 858 (1979).
[17] J. L. Gardon, J. Paint. Technol., 38, 43 (1966).

Accepted by editor January 27, 1981
Received for publication February 17, 1981


[^0]:    ${ }^{\mathbf{a}}(\mathrm{C})=$ experimentally determined from the maximum swelling of crystalline of cross-linked polymer; $(\mathrm{V})=$ experimentally determined from the maximum in intrinsic viscosity; (H) = determined by Hoy's group contribution technique.

